аналитическая гиперповерхность

аналитическая гиперповерхность
analytical hypersurface мат.

Русско-английский научно-технический словарь Масловского. 2015.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • ГИПЕРПОВЕРХНОСТЬ — 1) Обобщение понятия обычной поверхности трехмерного пространства на случай n мерного пространства. Размерность Г. на единицу меньше размерности объемлющего пространства. 2) Если дифференцируемые многообразия, и определено погружение то Г. в N.… …   Математическая энциклопедия

  • ОСОБАЯ ТОЧКА — 1) О. т. аналитической функции f(z) препятствие для аналитического продолжения элемента функции f(z) комплексного переменного zвдоль какого либо пути на плоскости этого переменного. Пусть аналитическая функция f(z) определена некоторым… …   Математическая энциклопедия

  • Седловая точка — функции z=x2 y2 (обозначена красным) …   Википедия

  • ДИФФЕРЕНЦИАЛЬНОЕ УРАВНЕНИЕ С ЧАСТНЫМИ ПРОИЗВОДНЫМИ — уравнение вида где F заданная действительная функция точки х=(xt, ..., х п )области Dевклидова пространства Е п, и действительных переменных (и(х) неизвестная функция) с неотрицательными целочисленными индексами i1 ,..., in, k=0, ..., т, по… …   Математическая энциклопедия

  • Поверхность — У этого термина существуют и другие значения, см. Поверхность (значения). Пример простой поверхности Поверхность  традиционное название для двумерного многообразия в …   Википедия

  • ПОСЛЕДОВАНИЯ ОТОБРАЖЕНИЕ — для гладкого или хотя бы непрерывного потока {St} и трансверсальной к нему гиперповерхности V отображение Т, сопоставляющее точке первую по времени точку пересечения с Vисходящей из vположительной полутраектории потока (и определенное для тех v,… …   Математическая энциклопедия

  • Задача Минковского — Задача Минковского: существует ли замкнутая выпуклая гиперповерхность , у которой гауссова кривизна является заданной функцией единичного вектора внешней нормали . Поставлена Минковским, которому принадлежит обобщённое решение задачи в том смысле …   Википедия

  • Касательная плоскость — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …   Википедия

  • Внутренняя геометрия поверхностей — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …   Википедия

  • Внутренняя геометрия поверхности — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …   Википедия

  • Внутренняя геометрия — Пример простой поверхности Поверхность традиционное название для двумерного многообразия в пространстве. Поверхности определяется как множество точек, координаты которых удовлетворяют определённому виду уравнений: Если функция непрерывна в… …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”